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1. INTRODUCTION

A problem of #ow-excited sound in cavity resonators is important in the design of wind
tunnels, gas transport systems and aircraft because the induced sound can cause an intense
noise with discrete frequency components and considerable vibrations in surrounding
mechanical structures. The details of the #ow-acoustic interaction in a resonator opening
have been the subject of several theoretical studies. In the model of Elder [1] the shear layer
displacement was shaped by a Kelvin}Helmholtz wave, while an acoustic response of the
resonant system was modelled by an equivalent impedance circuit of a resonator adopted
from organ pipe theory [2]. Taking into account a relation between #uctuation of volume
drive #ow and an induced acoustic #ow in the resonator opening, Elder found the feedback
equation for oscillations. A concept of feedback mechanism was also exploited in the
theoretical study of Mast and Pierce [3]. In their approach, the resonator-#ow system was
treated as an autonomous non-linear system and limit cycles of the system were found using
describing-function analysis. In the study of Bruggeman [4] #ow in the opening was
modelled by discrete vortices with a circulation growing linearly in a time. This model
showed that the excitation of the oscillation is determined by the position of the vortex
during the acoustic cycle and by the distribution of the vorticity.

In this letter, the theory is outlined to describe an excitation of a Helmholtz resonator by
a grazing air #ow. A one-dimensional, lumped-element model of the resonator is applied
and the excitation is assumed to be associated with an aerodynamic force generated by
compact vortices shed periodically from a separation edge of the resonator mouth. The
theory is used to determine the frequency and the amplitude of acoustic oscillations versus
#ow speed.

2. THEORETICAL MODEL

The problem of the excitation of a Helmholtz resonator by a grazing #ow is illustrated in
Figure 1. The resonator consists of a cavity with the volume <

�
and a narrow, rectangular

neck. The mouth of the resonator lies in a smooth rigid surface and occupies the portion
0)x)l, 0)z)s. The dimension s of the mouth greatly exceeds the dimension l of the
mouth edge which is parallel to the #ow direction. The e!ect of the external excitation is
assumed to be equivalent to the application of a uniform time dependent pressure
perturbation p over the mouth of the resonator. Thus, the di!erential equation for the
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Figure 1. (a) Grazing #ow over Helmholtz resonator of volume <
�
having rectangular ori"ce of dimensions

l and s, (b) location of co-ordinate system in resonator ori"ce.
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volume displacement � of the slug of air in the resonator neck can be written as [5]

M
d��
dt�

#R
d�
dt

#

�
C

"p, (1)

whereM is the acoustic inertance of the mass of air in the resonator neck, C"<
�
/�c is the

acoustic compliance of the air in the cavity (� is the air density, c is the speed of sound) and
R is the acoustic resistance which provides the damping of the motion due to viscous e!ects
in the neck and the energy loss by a radiation.

The excitation of the resonator is caused by a feedback mechanism between disturbances
in a shear layer and the acoustic "eld in the resonator neck. The feedback is provided by the
acoustic particle velocity u, which induces disturbances in the shear layer at the separation
edge. When the amplitude of u is moderate, the disturbed shear layer rolls up into a discrete
vortex because of non-linear saturation. As was shown by measurements [6, 7], the vortex is
shed from the separation edge at the instant when the velocity u is crossing the zero level
and is directed into the resonator cavity. If it is assumed that the vortex shedding occurs at
the moment t"0, then the oscillating particle velocity u is given by

u"!ju
�
sin(�t), u

�
'0, (2)

where � is the oscillation frequency. As the vortex is convected downstream, it interacts
with acoustic "eld and produces the acoustic energy which reinforces the oscillation. The
instantaneous acoustic power generated by a vortex moving within the sound "eld can be
calculated from Howe's formula [8]

P(t)"F. u, F"�
�

f d<, (3)

where f"!�(��v) is the force per unit volume which may be considered as the force
acting on the acoustic "eld, �"��v is the vorticity vector and v is the local #uid velocity.
The integral is carried out over the volume<where the vorticity � is non-zero. A transfer of
an energy from the vortical "eld to the acoustic "eld occurs if the average power P in the
oscillation period is positive.

In order to describe a vorticity distribution, the model of Bruggeman [4] is used and the
assumption model that all the vorticity, which is shed from the separation edge, is
concentrated in a compact line vortex. The circulation of the vortex increases linearly with
the time according to �(t)"0)5;�t. The convective velocity;

�
of the vortex is constant and



TABLE 1

¸imit values of S for ,rst ,ve modes (S
�
(S(S

�
)

Mode number 1 2 3 4 5

S
�

4)49 10)90 17)22 23)52 29)81
S
�

7)72 14)06 20)37 26)67 32)96
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close to a half of #ow velocity. Now, consider the situation when the force f is produced by
one vortex in the oscillation period ¹ only. This corresponds to the case �)¹, where
�"l/;

�
is the time at which the vortex travels from the separation edge to the downstream

edge. The force f is then given by

f"�
j�;

�
�(t)�(x!;

�
t)�(y),

0,

0)t)�,
�(t)¹,

(4)

where 0)x)l and 0)z)s. When � satis"es the condition ¹(�)2¹, the driving force
is generated by two vortices in the oscillation period. In this case, the force f in the resonator
mouth may be written as

f"�
j�;

�
��(t#¹)�[x!;

�
(t#¹ )]#�(t)� (x!;

�
t)�� (y),

j�;
�
�(t)�(x!;

�
t)�(y),

0)t)�!¹,

�!¹(t)¹.
(5)

In the same manner, the force f may be found when it is produced by a larger amount of
vortices during the oscillation period. Calculations of the average power P for the force
f predicted for one vortex, two vortices as well as for more vortices have shown that P is
non-zero only for the fundamental Fourier component of the force F, so it may be treated as
&&external'' force acting on the resonator. This component has the form

F
�
"!j

�A
�
;�

2�S
[S sin (�t!S)!cos(�t!S)#cos(�t)], (6)

whereA
�
is the mouth area and S"�� is a Strouhal number determined for the convection

speed of the vortex. Thus, the expression for the power P is given by

P"�F
�

) u	"

�A
�
u
�
;�

4�S
[S cos(S)!sin(S )], (7)

where the angle brackets denote an average over the period. From equation (7) it is clear
that the power P is positive when the following condition is satis"ed:

S cos(S)!sin(S)'0. (8)

If it is assumed that the left-hand side of this expression is equal to zero then after simple
transformations one obtains the equations for the limit values of S:

S#tan��(1/S)"2n�$�/2, n"1, 2, 32, (9)

where n is a hydrodynamicmode number. Calculation results of the lower (S
�
) and the upper

(S
�
) limits of S for "rst "ve modes are collected in Table 1. A solution of equations (9) for

higher mode number yields the values of S
�
and S

�
close to 2�(n!�

�
) and 2�(n#�

�
),

respectively.
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Now, to simplify the analysis it is assumed that the velocity u"u
�
sin(�t) represents the

acoustic motion in the resonator neck. In this case from equation (6) it follows that the
driving pressure is given by

p"

�;�

2�S
�[S cos(S )!sin(S)] sin(�t)![S sin(S )#cos(S )!1] cos(�t)�. (10)

Since u"d�/dt, substituting equation (10) into (1) yields

u
�
"

�;�

2�A
�
RS

[S cos(S)!sin (S )], (11)

thus, the amplitude of acoustic oscillation is proportional to the square of the #ow velocity
;. It is important to note that this result is in accordance with experimental observations of
Bruggeman [4] and Kriesels et al. [9]. To obtain a formula for the Strouhal number S it is
convenient to use the alternative form of equation (10)

p"

�
;�

2�S
sin(�t!S!� ), (12)

where


"�S�!2[cos(S)#sin(S)!1], �"tan���
1!cos(S )

S!sin(S)� , (13)

which results from the fact that in equation (10) the expressions in square brackets are real
and imaginary parts of exp( jS)�S!sin(S)#j[1!cos(S )]�. Taking into account the limit
values of S it can be immediately seen that an argument of the inverse tangent function
always assumes non-negative values. Moreover, from condition (8) we have that for each
S the following relation must be satis"ed:

1!cos(S)

S!sin(S)
(1/S. (14)

Thus, a maximum of � does not exceed the value 1/S
�
. This means that � is much smaller

than S and may be neglected in further considerations. In this case from equations (1) and
(12) one obtains the following phase relationship:

S"tan�� �Q�
1

�
!���#2n�, n"1, 2, 32, (15)

where �"�/�
�
is a non-dimensional frequency parameter, �

�
"1/�CM is a resonance

frequency,Q"�M/R�C is a quality factor and an inverse tangent function has the range
!�/2(tan��( ))(�/2. If acoustic parameters of the resonator and a relation between the
vortex convection speed ;

�
and the #ow velocity ; are speci"ed, a problem of "nding the

oscillation frequency � resolves itself into a numerical solution of equation (15) for a given
mode number n. Substitution of � into equation (11) enables one to determine the
oscillation amplitude.

It should be emphasized that in the proposed model a simple form of #ow-acoustic
coupling was assumed because force #uctuations, induced by vortices travelling across
a resonator opening, excite an acoustic velocity which in turn triggers a periodic formation
of new vortices. In previous theoretical methods a more complicated feedback mechanism
was considered. For example, in the model of Mast and Pierce [3] it was assumed that
a volume #ow source associated with an interaction of discrete vortices with a downstream
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edge acts on a mass within the resonator opening and produces a driving pressure. An
acoustic response of the resonator to this pressure is assumed to be similar to that of
a lumped acoustic system. A total volume #ow is a result of the excitation and it is
considered as a sum of a source volume #ow and an acoustic resonator #ow. The resonator
#ow triggers a formation of new vortices at the upstream edge of the opening, closing
a feedback loop. A criterion of sound excitation is that the loop gain is equal to unity. Since
the presented model is similar to that of Mast and Pierce in some respects (the same phase
relationship between an acoustic velocity and a vortex shedding, a driving pressure
proportional to a square of #ow velocity, a series lumped-element model of resonator), it
will be interesting to compare equation (15) with the phase relationship

S"tan���
Q�!��(Q�!1)

Q�� �#2n�, n"1, 2, 3,2, (16)

obtained in reference [3] by means of a criterion of feedback loop gain. It is easy to see that
for high-quality resonators the solutions of equations (15) and (16) are almost identical
because the inverse tangent function in equation (16) can be expressed as

tan���
Q�!��(Q�!1)

Q�� �"tan���
�
Q�#tan���Q�

1

�
!���. (17)

3. COMPARISON BETWEEN THEORY AND EXPERIMENT

The theory presented here was compared to the experimental data of Nelson et al. [6]
obtained for a Helmholtz resonator with the mouth dimension l"10 mm. In the
experiment, the oscillation frequency f and the amplitude p of a cavity pressure were
measured as a function of ;

�
, the velocity far from the resonator mouth. The maximum

cavity pressure was detected at a value of ;
�

of 22 m/s. A velocity just above the mouth,
which corresponds to the velocity ; in the theoretical model, was measured at the peak
excitation only and it was found that;"12 m/s. At this #ow speed the convection velocity
of the vortex inside the resonator mouth was 6 m/s. In comparison, we use the velocity
; instead of ;

�
assuming that ; is proportional to ;

�
by the factor 12/22. In the

investigation of Nelson et al. parameters of the resonator needed by the theory were
measured and these are

C"3)1�10�� m�s�/kg, M"22 kg/m�, Q
�
"10, (18)

where Q
�
is a quality factor at the resonance frequency. Since losses in the resonator were

dominated by radiation, a value of R was computed from the formula R"�ck�/2�, where
k is the wave number.

By use of the theoretical method outlined above, calculations of frequency f and
amplitude u

�
of oscillation were carried out for the "rst mode number and the convection

speed ;
�
of the vortex equal to ;/2. With a view to compare experimental data with the

results of amplitude calculation, from the equation

p"u
�
A

�
/�C (19)

the amplitude of a cavity pressure was computed using theoretical values of the velocity u
�
.

As shown in Figure 2(a), the theory predicts accurately the in#uence of the #ow speed on the
oscillation frequency. A larger di!erence between experiment and theory is noted in the case
of oscillation amplitude, because the calculated pressure amplitude is about a factor three
higher than the measured amplitude and the model predicts a peak excitation for the #ow



Figure 2. (a) In#uence of #ow speed on oscillation frequency, (b) normalized cavity pressure amplitude versus
normalized #ow speed. (p

�
)
��	

/(p
�
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����


"0)306, (;
�
)
��	

/(;
�
)

����


"0)889. Lines: theory; dots: experimental data of
Nelson et al. [6].
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velocity;"13)5 m/s. However, if the pressure amplitude and #ow velocity are normalized
to p

�
and;

�
, the values of p and; at the peak excitation, the agreement between the theory

and the experiment seems to be reasonably good (Figure 2(b)).

4. SUMMARY AND CONCLUSIONS

A simple model of a #ow-excited Helmholtz resonator has been presented. In the #ow
description, it was assumed that vorticity generation begins immediately downstream of the
edge of #ow separation and the shear layer disturbance is described as a concentrated
vortex. The last assumption is supported by the fact that disturbances in the shear layer are
large and cannot be modelled by the growth of small, wave-like disturbance in the shear
layer as in the classical approach to this problem.

A phase between a sound "eld and the unsteady vortical "eld was determined by
a relation between a shedding of the vortex and the acoustic particle velocity at the
separation edge only. Thus, by contrast to models with a feedback loop explicitly taken into
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account, the phase relationship between the acoustic #ow and the vortex}downstream edge
interaction is not needed.

As was shown by the theory, a fundamental component of a force generated by moving
vortices is e!ective in an acoustic power generation only; therefore, it may be treated as an
external force driving a resonance system. From the "nal equations for oscillation, the
frequency and the amplitude of cavity pressure can be calculated as a function of a #ow
speed. A support for the proposed theory is provided by favourable comparison between
theoretical predictions and experimental data.
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